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Abstract

A nonlinear Lamb wave approach is presented for characterizing the in-plane elastic anisotropy of a solid plate. The

effect of second-harmonic generation in an anisotropic solid plate exists and through this the Lamb waves propagate.

When the direction of the Lamb wave propagation in an anisotropic plate changes, the influences of the elastic anisotropy

of the plate material on the second-harmonic generation of the Lamb wave propagation have been analyzed. Theoretical

analyses show that the effect of second-harmonic generation of the Lamb wave propagation is closely associated with the

elastic anisotropy of the solid plate. Based on the theoretical analyses, characterization of the in-plane elastic anisotropy of

a given rolled aluminum sheet is experimentally studied. For the different directions of the Lamb wave propagation relative

to the rolling direction of the aluminum sheet, the amplitude–frequency curves both of the fundamental waves and the

second harmonics of Lamb wave propagation are measured under the condition that the Lamb waves have a strong

nonlinearity. It is found that the in-plane elastic anisotropy of the rolled aluminum sheet can clearly affect the efficiency of

second-harmonic generation by the Lamb wave propagation. The stress wave factors (SWFs) in acousto-ultrasonic

technique are used for reference. Based on the data measured, the normalized SWF curves of the Lamb wave propagation

versus the orientation angles relative to the rolling direction of the aluminum sheet are obtained. The results show that the

second-harmonic SWF of the Lamb wave propagation varies more sensitively with the orientation angles than does the

SWF of the fundamental Lamb wave propagation. It is found that the effect of second-harmonic generation of the Lamb

wave propagation can be used to accurately characterize the in-plane elastic anisotropy for the given solid plate.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the plastic deformation in the rolling manufacture of metal plates, anisotropy of mechanical
properties will occur in metal materials. There is in-plane elastic anisotropy in rolled metal plates [1].
Generally speaking, the in-plane elastic anisotropy of a metal plate is associated with microstructural
characteristics of the plate material subject to rolled processing. Characterization of the in-plane elastic
anisotropy is crucial for discerning the texture of rolled metal plates. For a number of years, study has focused
on the measurements of texture of solid plates using a range of ultrasonic modes [2–11]. It is known that the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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characteristics of the Lamb wave propagation will be influenced by in-plane elastic anisotropy. Experimental
and theoretical studies showed that the Lamb waves could be effectively used for characterizing anisotropic
plates [5–11].

To the authors’ knowledge, all the measurements of texture or anisotropy using ultrasonic modes are in the
linear regime of ultrasonic wave propagation. It is well known that nonlinear ultrasonic measurements can
provide more sensitive measures of material properties relevant to microstructures [12–14]. Considering the
high sensitivities of nonlinear ultrasonic measurements to the material/structure properties and the existence
of strong nonlinearity of the Lamb wave propagation [15–18], the use of the nonlinear effect of the Lamb wave
propagation for characterizing the in-plane elastic anisotropy of solid plates will be examined in this paper. It
is found that, for characterization of the in-plane elastic anisotropy of solid plates, the effect of second-
harmonic generation by the Lamb wave propagation can provide more accurate information than the linear
Lamb wave measurements.

2. Theoretical foundations

It is well known that Lamb waves can propagate over long distances and are sensitive to the desired elastic
properties of the material. The Lagrangian coordinates (a1, a2, a3) are established for an anisotropic solid plate
shown in Fig. 1. Lamb waves are assumed to propagate along the a3 axis. Through the equations of
mechanical boundary conditions, the dispersion relations of the Lamb wave propagation, as well as the
corresponding displacement fields, can be determined [19]. The components of the displacement field of a
Lamb wave mode (with the frequency f and the order p), propagating in an anisotropic plate (see Fig. 1), can
be expressed formally as [19]

Ui ¼ U
ðf ;pÞ
i ða2Þexp ½jk

ðf ;pÞa3 � jot�; i ¼ 1; 2; 3, (1)

where the angular frequency is given by o ¼ 2pf. The subscript i attached to U denotes the components of the
displacement field along the a1, a2, and a3 axes. The superscript ‘(f, p)’ attached to U and k denotes the Lamb
wave mode with the frequency f and the order p. k(f, p) is the a3-component of wave vectors of partial bulk
waves constituting the (f, p) Lamb wave mode. The phase velocity of the (f, p) Lamb wave is given by
c(f, p)

¼ o/k(f, p).
The previous work focused on the analyses of second-harmonic generation by the Lamb wave propagation

in isotropic solid plates [15–18]. Here we analyze the nonlinear effect of the Lamb wave propagation in
anisotropic plates. We assume the elastic constants of the material of the anisotropic plate are defined in the
a1
0 a2
0 a3
0 coordinate system (see Fig. 1). Via the rotation transformation (the rotation angles are, respectively,

denoted by g1, g2 and g3), we can get the corresponding elastic constants of the material in the a1 a2 a3
coordinate system. When the (f, p) Lamb wave travels down the a3 axis of the structure shown in Fig. 1, the
bulk driving force is of double the fundamental frequency in the anisotropic plate because of the convective
nonlinearity independent of the material properties and the inherent nonlinearity due to the nonlinear elastic
Fig. 1. Schematic representation of an anisotropic solid plate.
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properties of the solid [15–17]. The components of the second-order bulk driving force in the interior of the
anisotropic plate, denoted by Fi

(f, p)(i ¼ 1, 2, 3), are given by [20]

F
ðf ;pÞ
i ¼ Cijklmn þ dkmCijln þ dimCjnkl þ dikCjlmn

� � q2Uk

qajqal

qUm

qan

, (2)

where Cijkl and Cijklmn are, respectively, the second- and third-order elastic constants in the a1 a2 a3 coordinate
system, and i, j, k, l, m, n ¼ 1, 2, 3. There is the factor exp ½j2kðf ;pÞa3 � j2ot� in Fi

(f, p). Besides Fi
(f, p), there are

the traction stress tensors of double the fundamental frequency, denoted by Pij
(f, p) (i, j ¼ 1, 2, 3), at the two

surfaces of the anisotropic solid plate [15–17]. Pij
(f, p) can be written formally as [20]

P
ðf ;pÞ
ij ¼

1

2
Cijklmn þ dkmC

ijl n þ dimCjnkl þ dikCjlmn

� �
qUk

qal

qUm

qan

. (3)

Obviously, Pij
(f, p) also includes the factor exp ½j2kðf ;pÞa3 � j2ot�.

According to a second-order perturbation approximation and a modal analysis approach for waveguide
excitation, Fi

(f, p) and Pij
(f, p) can be assumed to be a bulk source and a surface source of a series of Double

Frequency Lamb waves (abbr. DFLWs), respectively [15–17]. The second-harmonic fields (denoted by U(2f))
generated by Fi

(f, p) and Pij
(f, p) can formally be written as follows [15–17,19]:

Uð2f Þ ¼
X

q

Aqða3Þ �Uð2f ;qÞða2Þ; U
ð2f Þ
i ¼

X
q

Aqða3Þ �U
ð2f ;qÞ
i ða2Þ, (4)

where Ui
(2f) (i ¼ 1, 2, 3) are, respectively, the three components of U(2f) along the a1, a2, and a3 axes.

The displacement field function of the (2f, q) DFLW is denoted by U(2f,q) (a2), and Ui
(2f,q) (a2) is the component

of U(2f,q)(a2) along the a1, a2, or a3 axis. Aq(a3) is the expansion coefficient of the (2f, q) DFLW.
On the basis of the reciprocity relation and the orthogonality of guided wave modes, the equation governing

the expansion coefficient of the (2f, q) DFLW can be written as [15–17]

q
qa3
� jkð2f ;qÞ

� �
Aqða3Þ ¼

F S þ F b

4Pqq

exp ½j2kðf ;pÞa3�, (5)

where k(2f, q) is the a3-component of wave vectors of partial bulk waves constituting the (2f, q) DFLW
mode and these are related by k(2f, q)

¼ 2o/c(2f, q), where c(2f, q) is the phase velocity of the (2f, q) DFLW. Here,

Fb ¼ 2jo
Z 0

�d

X3
i¼1

½ ~U
ð2f ;qÞ
i ða2ÞF

ðf ;pÞ
i �da2, (6)

is the forcing function due to the bulk driving force Fi
(f, p), and

FS ¼ 2jo
X

i

½ ~U
ð2f ;qÞ
i ða2Þâi � P

ðf ;pÞ � â2 �U
ð2f Þ
i âi � ~P

ð2f ;qÞ
ða2Þ � â2�

�����
a2¼0

a2¼�d

,

P
ðf ;pÞ
ij ¼ âi � P

ðf ;pÞ � âj ; P
ð2f ;qÞ
ij ða2Þ ¼ âi � P

ð2f ;qÞða2Þ � âj, ð7Þ

is the forcing function due to the traction stress tensor Pij
(f, p). In Eqs. (5)–(7), Pqq is the (2f, q) DFLW average

power flow, per unit width along the a1 direction (see Fig. 1). âi is the unit vector along the ai axis. The sign ‘�’
denotes the complex conjugate operation for the corresponding physical quantity. P(2f, q)(a2) is the stress

tensor of the (2f, q) DFLW component. The mechanical boundary condition requires that Pð2f ;qÞða2Þ � â2 be
zero as a2 ¼ 0, �d (see Fig. 1). Eq. (7) can further be written as

FS ¼ 2jo
X

i

½ ~U
ð2f ;qÞ
i ða2Þâi � P

ðf ;pÞ � â2�

�����
a2¼0

a2¼�d

. (8)

The position of excitation source for the (f, p) Lamb wave is assumed to be at a3 ¼ 0. The initial condition
for the (2f, q) DFLW generation requires that Aq(a3) be zero when a3 ¼ 0. Aq(a3) can formally be derived
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from Eq. (5) as follows [15]:

Aqða3Þ ¼
ðF S þ F bÞ

4Pqq=d

sin ½D kðf ;pÞa3�

D kðf ;pÞd
exp ½jkð2f ;qÞa3 þ jDkðf ;pÞa3�, (9)

where D ¼ [c(2f, q)
�c(f, p)]/c(2f, q) is the relative difference of phase velocity between the (f, p) Lamb wave and

the (2f, q) DFLW. When D ¼ 0 or DE0, the amplitude of the (2f, q) DFLW component will grow with
propagation distance. When D 6¼0, there is a beat effect for the amplitudes of the (2f, q) DFLWs with
propagation distance [15]. This result is the same as that when the fundamental Lamb waves propagate in an
isotropic solid plate. It should be noted that only the propagation modes of Lamb waves are considered, and
the evanescent wave modes are neglected.

For a given direction of the Lamb wave propagation (being consistent with the a3 axis), such as the rolling
direction of a rolled metal sheet, the (f, p) Lamb wave mode can be selectively generated to ensure D ¼ 0 or
DE0 (namely c(f, p)

¼ c(2f, q) or c(f, p)Ec(2f, q)). The (2f, q) DFLW component will grow with propagation
distance, and the obvious second-harmonic signals of the Lamb wave propagation may be observed. When the
direction of the (f, p) Lamb wave propagation (being consistent with the a3 axis) changes, due to the elastic
anisotropy of the solid plate, the second-harmonic signals of the (f, p) Lamb waves will be influenced by the
following aspects. First, FS and Fb in Eq. (9) are associated with the second- and third-order elastic constants
of the material of the anisotropic plate in the a1 a2 a3 coordinate system [namely Cijkl and Cijklmn in Eqs. (2)
and (3)]. This will lead to changes in the magnitude of Aq(a3) when the direction of the Lamb wave
propagation changes (namely the rotation angles in Fig. 1 change). Second, the elastic anisotropy of the solid
plate will influence the dispersion relations of Lamb waves. The condition c(f, p)

¼ c(2f, q) or c(f, p)Ec(2f, q) may
not now be satisfied exactly for the other directions of Lamb wave propagation. This will remarkably influence
the efficiency of second-harmonic generation by the (f, p) Lamb wave propagation [15]. When there is a clear
difference between c(f, p) and c(2f, p), the (2f, q) DFLW component may not have a cumulative growth effect
with propagation distance. For this case, second-harmonic signals cannot be detected effectively. Further, the
elastic anisotropy of the plate material can provide different acoustic field features for the (f, p) Lamb wave
propagating in different directions. This will also influence the magnitude of Aq(a3) because FS and Fb in Eq.
(9) are proportional to the square of the amplitude of the (f, p) Lamb wave [20]. The above analyses indicate
that the elastic anisotropy of a solid plate can effectively influence the efficiency of second-harmonic
generation by Lamb wave propagation.
3. Experimental examinations

The anisotropic plate considered here is a rolled aluminum sheet of 1.80mm thickness. The elastic
anisotropy of the material of the rolled aluminum sheet may be assumed to be a slight departure from the
elastic isotropy of the aluminum [1]. For simplicity, the material of the rolled aluminum sheet is thought of to
be isotropic when we compute the dispersion curves of the Lamb wave propagation. The dispersion curves for
the fundamental Lamb waves and the symmetric DFLWs are shown in Fig. 2 for an isotropic aluminum sheet
of 1.80mm thickness [15].

Liquid wedge transducers are used to generate the fundamental Lamb waves, and to detect the fundamental
waves and the second harmonics of Lamb wave propagation at the surface of the rolled aluminum sheet. The
oblique angle b of the liquid wedge transducers is given by sinb ¼ cL/c

(f, p), where cL is the longitudinal wave
velocity of the liquid (silicon oil, cL ¼ 1.080MHzmm). The oblique angle of the liquid wedges is 7.51. The
phase velocity of the fundamental Lamb wave to be generated (c(f, p)

¼ cL/sinb ¼ 8.274MHzmm) is
determined by the dashed line H in Fig. 2. It can be found that the intersection between the A2 (S2) Lamb wave
dispersion curve and the dashed line N is very close to the one between the symmetric DFLW dispersion curve

and the line N. This means that there is a relationship cðf ;pÞ � cð2f ;Q0Þ (p ¼ S2, A2) at the frequency given by the
dashed line N in Fig. 2. The intersections between the dashed line N and the dispersion curves of the symmetric
DFLWs (namely the points Q0, Q1, Q2, Q3, etc.) denote the DFLW components constituting the fields of
second harmonics by the A2 and S2 Lamb wave propagation, whose phase velocity is determined by
the dashed line H in Fig. 2 [15–17]. According to the expression of the DFLW expansion coefficient shown in
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Fig. 2. Dispersion curves of Lamb waves.

Fig. 3. Block diagram of the experimental setup for Lamb waves.
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Eq. (9), the Q0 DFLW component may have a cumulative growth effect and the contribution of the other
DFLW components (namely the points Q1, Q2, Q3, etc.) to U(2f) may be neglected.

Fig. 3 illustrates the experimental setup for Lamb waves. The liquid wedge transducers Tx and Rx with the
same oblique angles (7.51) are used to generate the fundamental Lamb waves, and to detect the fundamental-
and double-frequency signals of the Lamb wave propagation. The central frequencies of the longitudinal wave
transducers Tx and Rx are, respectively, 2 and 4MHz, and the effective diameters of Tx and Rx are 20mm.
The cutoff frequencies for the low pass (LP) and high pass (HP) filters are, respectively, around 3.3 and
4.7MHz. It should be noted that the liquid couplant (silicon oil) is used to ensure that the acoustic coupling
conditions between the transducers and the aluminum sheet are kept the same for all the measurements.

The transmitting transducer Tx driven by tone-burst voltages (with the carrier frequency f and the burst
duration t) generates time-domain pulses of Lamb waves (see Fig. 3). The LP filter is used to eliminate the
higher harmonic frequency components of the tone-burst voltages applied to Tx. The Ritec-SNAP system is
used to generate tone-burst voltages for excitation of the transducer Tx, and to perform the signal receiving
and processing for the primary and secondary waves of the Lamb wave propagation in the rolled aluminum
sheet [18,21]. The ultrasonic signal can be assumed to be a time-domain burst f(t), modulated by a term Ar(t).
f(t) can formally be written as f(t) ¼ Ar(t)sin(2pfrt+jr), where jr represents the phase shift in the transducer
and sample including the effect of the acoustic transit time [22]. The carrier frequency fr of f(t) may be f
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(i.e. fundamental wave) or 2f (i.e. second harmonic). The Ritec-SNAP system produces the two integration
signals associated with Ar(t) [18,22],

I1 ¼ R cosjr

Z t2

t1
ArðtÞdt; I2 ¼ R sinjr

Z t2

t1

ArðtÞdt, (10)

where Ar(t) should be wholly located between t1 and t2, and R is a constant associated with the parameter
setups of the Ritec-SNAP system. The amplitude of the sine wave sin(2pfrt+jr) can be given by [18,22]

Ārðf rÞ ¼

Z t2

t1

ArðtÞdt ¼ R�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 þ I22

q
. (11)

When fr ¼ f, the fundamental Lamb waves can be thought of as the carrier of f(t). Ārðf Þ denotes the
resultant amplitude of coherent superpositions of the multimode Lamb waves (being regarded as continuous
waves) [18]. When fr ¼ 2f, the resultant amplitude of second harmonics, Ārð2f Þ, can be used to characterize the
efficiency of second-harmonic generation by the propagation of the fundamental Lamb wave pulses [18].

When a tone burst (produced by the Ritec-SNAP system) is used to generate the transmitting wedge
transducer (Tx), the Lamb wave propagation occurs in the rolled aluminum sheet. The signals both of primary
waves and second harmonics are simultaneously detected by the receiving wedge transducer (Rx). Via the
Ritec-SNAP signal receiving and processing system, the amplitude–frequency curves for the primary waves
and second harmonics of the Lamb wave propagation are shown in Fig. 4, where the direction of the Lamb
wave propagation (namely the a3-axis in Fig. 1) is along the rolling direction of the rolled aluminum sheet, and
the separation between Tx and Rx (i.e., Da3) is 13 cm. The direct path signal of the tone burst for excitation of
the transmitting wedge transducer Tx cannot be observed in the receiving signal (i.e., f(t)) between the lower

and upper limits of the integral
R t2

t1
ArðtÞdt (namely t1 and t2). Near the frequencies f ¼ 1.6 and 2.5MHz, the

fundamental S1, A2, and S2 Lamb waves can be observed (see Figs. 2 and 4). In the immediate vicinity of
f ¼ 2.5MHz (theoretical prediction, f ¼ 2.65MHz, given by the dashed line N in Fig. 2), a clear second-
harmonic response is detected. This clear response should be attributed to the strong nonlinearity of Lamb
wave propagation. In the measurements of frequency scans, both the duration and the amplitude of tone-burst
voltages applied to Tx are kept unchanged.

We change the distance between Tx and Rx (Da3 varies from 7 cm to 16 cm, and the change step is 1 cm),
and perform similar frequency-swept measurements for Ārðf Þ and Ārð2f Þ as those whose results are shown in
Fig. 4 (the parameter setups for the experimental system are kept unchanged, and Lamb waves propagate
along the rolling direction of the rolled aluminum sheet). Near the driving frequency given by the dashed line
Fig. 4. Amplitude–frequency curves for the fundamental- and double-frequency signals of the Lamb wave propagation along the rolling

direction of the rolled aluminum sheet.
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Fig. 5. Curve of Ārð2f Þ=Ā
2

r ðf Þ versus Da3.

Fig. 6. Arrangement planform of the transducers and the rolled aluminum sheet.
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N in Fig. 2, the curve of Ārð2f Þ=Ā
2

r ðf Þ is shown as a function of propagation distance Da3, in Fig. 5 [18]. It can
readily be observed that the amplitudes of the second harmonics of Lamb waves propagating along the rolling
direction of the aluminum sheet grow with propagation distance near the driving frequency given by the
dashed line N in Fig. 2, where the condition cðf ;pÞ � cð2f ;Q0Þ (p ¼ S2, A2) is satisfied.

Next, we experimentally examine the influence of the in-plane elastic anisotropy of the rolled aluminum
sheet on the effect of second-harmonic generation by the lamb wave propagation. The arrangement planform
of the transducers and the rolled aluminum sheet is shown in Fig. 6, where y is the orientation angle of the a3
axis (namely the direction of Lamb wave propagation) relative to the rolling direction. We change the
orientation angle y, and perform the similar frequency-swept measurements for Ārðf Þ and Ārð2f Þ as those
whose results are shown in Fig. 4. In all the measurements, the separation between Tx and Rx (i.e., Da3) is
always 11 cm, and the parameter setups for the experimental system are kept unchanged. The change step of
the orientation angle y is 151. It should be pointed out that the liquid couplant (silicon oil) between the wedge
transducers and the aluminum sheet (see Fig. 3) can ensure the acoustic coupling condition to be almost the
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same for all the measurements. For quantifying the repeatability of the proposed measurements, at the same
position of the wedge transducers Tx and Rx (see Fig. 6), the repeated measurements are carried out three
times. In the process of the repeated measurements for Ārðf rÞ (fr ¼ f, 2f), the wedge transducers (Tx and Rx)
are removed and then re-located again at the same positions for the next measurement. Fig. 7 presents the
repeated measurement curves of Ārðf rÞ for y ¼ 01, 151, 451, 751, 901, 1051, 1351 and 1651. It can readily be

found that Ārð2f Þ is sensitive to changes in the orientation angle y. For considering the influence of the driving

frequency f on Ārðf rÞ, a parameter is given by [21,23]

SWFðf rÞ ¼

Z f 2

f 1

½Ārðf rÞ�
2df , (12)

where fr ¼ f or 2f; f1 and f2 are 0.1 and 4MHz, respectively. Considering the fact that the Lamb wave modes
are dominant in the measurements of frequency scans, and the concept of stress wave factors (SWFs) in
acousto-ultrasonic technique [23], SWF(f) and SWF(2f) are termed SWFs of the fundamental waves and the
second harmonics of Lamb wave propagation, respectively. The features of Lamb wave propagation
Fig. 7. Amplitude–frequency curves for the fundamental- and double-frequency signals of the Lamb wave propagation with respect to the

different orientation angles; (a) y ¼ 01; (b) y ¼ 151; (c) y ¼ 451; (d) y ¼ 751; (e) y ¼ 901; (f) y ¼ 1051; (g) y ¼ 1351; (h) y ¼ 1651.
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Fig. 7. (Continued)
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associated with the in-plane elastic anisotropy of the rolled aluminum sheet can be reflected by the parameter
SWF(fr). It is rational to use SWF(fr) to characterize the in-plane elastic anisotropy of the rolled aluminum

sheet. Based on the curves of the repeated measurements for Ārðf rÞ, the average values of SWF(fr), defined in
Eq. (12), can be calculated for different orientation angles. It is found that the relative error of the repeated
measurements for SWF(fr) is below 6%. For the case y ¼ 01, the average values of SWF(f) and SWF(2f) are,
respectively, 1.23 and 0.96V2MHz. Fig. 8 shows the normalized curves of the averaged SWF(f) and SWF(2f)
(relative to the average values of SWF(f) and SWF(2f) at y ¼ 01, respectively) versus the orientation angle y. It
can readily be found that the normalized curve of SWF(2f) is very sensitive to the orientation angle y. This
result is consistent with the theoretical prediction presented in the last paragraph of Section 2.

It should be noted that the efficiency of second-harmonic generation by Lamb wave propagation is not only
dependent on the displacement fields of the fundamental Lamb wave propagation, but also on the third-order
elastic constants of the material of the anisotropic plate and the relative difference between c(f, p) and c(2f, p)

[15]. Thus, the change tendency of SWF(2f) may be different from that of SWF(f) [see Fig. 8].
The above preliminary experimental investigations show that the effect of second-harmonic generation by

the Lamb wave propagation and SWF(2f) are very sensitive to the in-plane elastic anisotropy of the rolled
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Fig. 8. Normalized curves of SWF(fr) versus the orientation angle y; (a) SWF(fr)-y rectangular coordinate representation; (b) SWF(fr)-y
polar coordinate representation.
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aluminum sheet. The nonlinear Lamb wave measurements are more sensitive to the in-plane elastic anisotropy
than the linear Lamb wave measurements. The experimental results provide a potential that the in-plane
elastic anisotropy of solid plates can be accurately evaluated with SWF(2f).
4. Conclusions

An approach using the nonlinear effect of the Lamb wave propagation to characterize the in-plane elastic
anisotropy of a solid plate is proposed. Using a second-order perturbation approximation and a modal analysis
approach for waveguide excitation, the formal solution of the second harmonics of the Lamb wave propagation in
an anisotropic solid plate has been obtained. When the direction of the Lamb wave propagation changes, the
influences of the elastic anisotropy of a solid plate on the second-harmonic generation of the Lamb wave
propagation have been analyzed. Theoretical analyses indicate that the effect of second-harmonic generation of the
Lamb wave propagation is closely associated with the anisotropy of mechanical properties of a solid plate. When
the direction of the Lamb wave propagation in the given rolled aluminum sheet changes, the amplitude–frequency
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curves both of the fundamental waves and the second harmonics of the Lamb wave propagation are measured
under the condition that Lamb waves have a strong nonlinearity. The normalized curves of the SWFs of the Lamb
wave propagation versus the orientation angle relative to the rolling direction are obtained. The preliminary
experimental results show that the effect of second-harmonic generation by the Lamb wave propagation is very
sensitive to the in-plane elastic anisotropy of the rolled aluminum sheet. Especially, the normalized curve of the
second-harmonic SWF of Lamb wave propagation versus the orientation angle offers an accurate approach for
evaluating the in-plane elastic anisotropy of the rolled aluminum sheet. This paper provides a potential for accurate
characterization of the in-plane elastic anisotropy of solid plates.
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